
AI Planning
Lecture notes

Issa Hanou
These lecture notes are inspired by the lectures on AI Planning

by Christian Muise (Queen’s University, Kingston, Canada).

September 24, 2024

1 What is Planning?

Planning is the art and practice of thinking before acting.
–Patrik Haslum

Planning is a type of problem-solving. In planning, we answer the question of
how I get from where I am now to where I want to be? by creating a plan to
go from some starting point to a goal, where the plan can be represented as a
sequence of actions. There are tons of examples of planning in the real world, like
planning your route using Google Maps. Other, more complicated problems can
also be solved using planning techniques, for example, mega-printer operations
[3] or greenhouse optimization [1].

Scheduling problems, such as timetabling and personnel scheduling, are also
very related to planning. The main difference is that scheduling solvers arrange
known tasks over time, whereas planning solvers also have to figure out what
the exact tasks are.

1.1 Types of planning

There are different types of planning, which each take into account a different
set of aspects from the following list:

• Determinism: do we treat the problem as deterministic, non-deterministic,
or probabilistic?

• Observability: do we assume full knowledge of the world, or is there
only partial observability?

• Multi-agent: is there just one or multiple agents? In the second case,
how do they interact, do they collaborate or are they adversaries; do we
control all agents or is planning distributed?

1

• Objective: do we want any feasible plan? Do we want to minimize costs
or minimize the time? Are there other preferences?

These aspects can create a range of different problem settings, which we have
listed here for an overview. In this lecture, we focus on deterministic, fully
observable, single-agent problems where we want to find a satisfying plan to
introduce the concept of planning. However, other lectures in this course will
talk about some other forms, especially the probabilistic types.

• FOD Fully Observable Deterministic

• FOND Fully Observable Non-Deterministic

• POD Partial Observable Deterministic

• POND Partial Observable Non-Deterministic

• MDP Markov Decision Processes

• POMDP Partial Observable Markov Decision Processes

FOD

POD

FOND

POND

MDP

POMDP

Partial Observability

Non-deterministic

Probabilistic

Figure 1: Comparing different types of planning.

1.2 Solving a planning problem

Planning generally has three stages. First, you create a model of your problem.
Second, you solve the model. Finally, you execute the solution. All three steps
are directions of research in the planning community, and they are not fully
independent. The model you create, and all the fancy features that you use in
your model, will determine which solvers you can use to find solutions. The
problem-solving method that you use, in turn, might influence how fast you can
execute and how robust you are to external changes. Moreover, consequences

2

from execution might influence how realistic your model is and could result in
model changes.

In this lecture, we focus on the modeling of problems and show how to
find solutions using planning solvers. We will look at several traditional exam-
ples that are well-known in the planning community, but all methods that we
consider are not tailored to these specific domains. In other words, we consider
domain-independent planning, which is the most commonly studied type. Many
domains have been written in the past using the same modeling language, and
many planners have been developed that solve any problem written in the same
language.

Domain-Independent Modelling Language

Planner #1 Planner #2 .. Planner #n

Figure 2: Domain-Independent Planning.

2 Searching for solutions

In planning, we handle agents who think before they act so in other words,
they look ahead. Then, finding a plan that brings you to your goal becomes a
search problem. There are many ways to search for a solution, where the basic
methods perform an uninformed search, like depth-first search, breadth-first
search, or uniform-cost search (see subsection 2.3 for more details). However,
these uninformed searches will often select the first action that comes to mind,
which may not always be the best action to take.

In planning, agents generally think about what happens when they take a
certain action. So, they consider what the world would be like after taking an
action without having to try it out, like a simulation. However, to know the
effects of an action, they need to have a model of the world. This model formally
defines the search problem in finding a plan.

3

2.1 Search problem

A search problem consists of a state space, a successor function, a start, and a
goal test. The solution to a search problem is a sequence of actions (a plan) that
transforms the start state into a goal state. As we do not define the goal state,
only a test referring to a (partial) description of the goal, there are often multiple
goal states in any search problem. Consider, for example, the PacMan game
(see Figure 4). If the goal is to eat all the dots, this could be done in different
ways, and the goal state may have PacMan at different places, depending on
the last dot it ate. Our search problem defines a model of the world. Usually,
the model does not capture the whole world but only the specific part of the
world that we are interested in for our problem.

For example, consider the problem of traveling by train in the Netherlands.
Figure 3 shows a simplified illustration of the railway network, with the time it
takes to travel between cities on the edge. The state space consists of the train
stations in the Netherlands, and the successor function defines which stations
can be reached from other stations. If our start state is Delft and the goal test
is whether the state we are in is Utrecht, then a solution could use different
routes through the network.

Amsterdam

Schiphol

Leiden Utrecht

Den Haag Delft Rotterdam

20
30

20

25
30

10
20

10 10

35
4035

Figure 3: Example problem of finding a route through (partial) train network
in the Netherlands.

2.2 State spaces

The search traverses a state space, which is related to the problem state space
but stored differently. A world state includes every detail in the environment,
but a search state keeps only the details needed for planning, which is an ab-
straction of the world state. The biggest reason for the abstraction of a world
state is to maintain the size of a state space.

Consider the example in Figure 4. The world state has four parameters:
120 possible agent positions, a maximum food count of 30, 12 possible ghost

4

Figure 4: PacMan problem example with a 12× 10 grid.

positions, and four possible directions the agent is facing. This results in 120×
230 × 122 × 4 possible world states. Now, consider two possible problems in this
world; the first is for the agent to reach a certain location, then there are only
120 relevant search states. In a second problem, the agent has to eat all dots,
and there are 120× 230 possible search states.

All the states in the state space can form a graph, which is a mathematical
representation of the search problem. Different states are nodes, and the succes-
sors determine the edges. A state space graph does not contain any duplicates,
but some states can be reached through different paths. However, a state space
graph is rarely built completely due to memory limitations.

Instead, solvers often keep a search tree, with the start state at the root, and
each node has its possible successors as children (which represent the what-if
scenarios). Although each node represents a state, the path that you follow from
the root to this node corresponds to a plan to achieve that state. In the search
tree, states may be duplicated as different plans now correspond to different
nodes. However, even with search trees, we can seldom build the whole tree as
it grows exponentially large. Important to note is that each node in the search
tree is an entire path in the state space graph. Figure 5 shows the difference
between a state space graph and a search tree.

a

b

S G

(a) Example problem state space graph.

S

a b

G b a G

GbaG

......

(b) Example problem (partial) search tree.

Figure 5: State space graphs versus search trees.

The search tree is used to find a solution, where we start at the starting

5

state (root node) and expand nodes to unfold potential plans. Here, we try to
expand as few nodes as possible while trying to reach a plan that finds the goal.
Algorithm 1 shows the pseudocode for a tree search, where the most important
notion is the search frontier (the bottom level of explored nodes) and what node
from the frontier to expand next. Figure 6 shows an example of how to progress
through a search tree with an arbitrary search strategy, which only returns when
the goal is removed from the open list.

Algorithm 1 Pesudocode for tree search.

function Tree-Search(problem, strategy)
Initialize the search tree using the initial state of problem
loop

if there are no candidates for expansion then return failure
end if
choose a leaf node for expansion according to strategy
if the node contains a goal state then

return the corresponding solution
else

expand the node and add the resulting nodes to the search tree
end if

end loop
end function

2.3 Search algorithms (not in lecture)

In this section, we give some more information on different search algorithms,
which have been previously discussed in earlier lectures as well. However, other
search algorithms also exist. First, we cover a set of basic search types using
uninformed search: they do not have any knowledge of the goal.

2.3.1 Uninformed search

Depth-First Search (DFS) Depth-first search is a basic search algorithm
where the search tree is traversed by always expanding the deepest node in the
search frontier first. In this case, the search frontier can be implemented with
a Last-In-First-Out stack. When the goal is reached, the search stops, so the
whole tree is not necessarily searched, which may result in sub-optimal plans.
When using a branching factor b, and a search tree depth of m, the search time
can go up to O(bm), but only if m is finite (if there are cycles it can be infinite).
However, the space required to store the search frontier is always limited by
O(bm), as only the siblings on the path to the root are stored.

Breadth-First Search (BFS) Contrary to depth-first search, breadth-first
search expands the shallowest node first, so the search frontier forms a First-
In-First-Out queue. In this case, the time to search is expressed by the branch-

6

S

d

p q

h

e

b

a

c

r

f

G

(a) Problem: find path from S to G.

S

e p

qh r

p q

q

f

c G

a

d

cb e

h r

f

c G

aa

a

p q

q

(b) Search tree

S

S → d

S → e

S → p

S → d → b

S → d → c

S → d → e

S → d → e → h

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

(c) Search paths explored.

Figure 6: Tree-Search example.

ing factor b and the depth of the shallowest solution as O(bs), which can still
be O(bm) in the worst-case scenario. However, the algorithm needs the same
amount of space O(bs). If all the edge costs are 1, it is possible to find the
optimal solutions using this algorithm.

Iterative Deepening This search type is a combination of the last two. It
starts by running a DFS search with depth limit 1. Then, if no solution is found,
it runs a DFS search with depth 2, and so on. The advantage is that only the
memory storage of DFS is used, and we avoid doing the most work in the lowest
level of the search tree (if a shallow solution exists).

Uniform-Cost Search This search type is similar to BFS, but now we use
edge costs. The tree expands the next cheapest nodes while using a priority

7

queue for the search frontier with the cumulative cost to get to a certain node.
Now, only nodes that have a lower cost than the cheapest solution are expanded.
The optimal solution cost is C∗, where each edge costs at least ϵ, so the effective
depth to the solution is C∗

ϵ . The search is exponential in the effective depth, so

it takes O(b
O∗
ϵ). Uniform-Cost Search is a special case of the Dijkstra algorithm,

where nodes only get added to the queue if they are needed.

2.3.2 Informed Search

Informed search assumes knowledge of a goal state, and often uses heuristics to
estimate how close a current state is to a goal state. Most heuristics are designed
for a particular search problem, but there are also more general heuristics.

Greedy search Greedy search is the simplest form of informed search. The
strategy says: expand the node that you think is closest to a goal state. This is
a form of best-first search, but it heavily depends on the quality of the heuristic.
In case of a bad heuristic, the search acts like a badly-guided BFS. However,
with a good heuristic, good solutions can be found rather quickly.

A∗ Search A∗ search is a well-known algorithm used a lot in Artificial In-
telligence. It is a combination of uniform-cost search and greedy search. The
uniform-cost search orders the search frontier by path cost (how much did it
take to get to where the current node is), which is also called the forward cost
or g(n). On the other hand, greedy search orders the nodes by goal proximity
(according to some heuristic) and estimates the cost h(n) of the cheapest path
from node n to the goal, sometimes called the backward cost. The A∗ search
frontier orders by the sum of f(n) = g(n) + h(n). The A∗ search does not yet
stop when it encounters a goal, but only when a goal node is dequeued from
the search frontier, this ensures optimality of the algorithm, but only when the
heuristic is good. To have an optimal search algorithm, the heuristic must be
admissible so that it never overestimates the cost-to-go to the goal. Formally,
this is defined such that the value of an admissible heuristic h(n) can never be
more than the true cost h∗(n): 0 ≤ h(n) ≤ h∗(n).

2.4 Search strategies

Besides the different search algorithms you can use, we also introduce differ-
ent search strategies. Where most search problems use a regular search, called
forward search, there are other options. Since planning has a notion of look-
ing ahead to see possible consequences, we can also use this information in a
backward search. In forward search, we use the cost of the path to get from the
start node to node n, which is gF (n). Then, we expand a next node u and we
can find the cost gF (u). However, with backward search, we use the cost of the
path to get from some node n to the goal node, which is gB(n). Then, we can
look at the options how we could have gotten to node n and use that to find
the previous node v to get gB(v).

8

With these two search strategies, we can also introduce a third, namely
bidirectional search. With this strategy, you generally keep two search frontiers
(one forward and one backward) and alternate which one to expand next. Then,
ideally, the two searches meet in the middle to complete a path. However, it
may also be that the two searches completely miss each other, and then you
are doing twice as much work without necessarily finding a better path. So,
deciding which of the two to expand next is very important and an active area
of research.

Finally, there is a different set of strategies that does not do regular search
at all. You can also position your problem as a Constraint Satisfaction Problem,
by encoding the state into some data structure, which often becomes somewhat
of a black box. Then, you can keep a variable for the action at time t which will
eventually compose your plan. The goal is encoded as a set of constraints that
must hold. While this allows you to use any of the general solvers (like constraint
programming, Boolean satisfiability, or mixed integer programming), the state
space is often very big and increased due to the time component. So, you need
a very strong formulation to get results within a meaningful computation time.

3 Modeling problems

So, how do you model problems for a planning domain? As shown in Figure 2,
we use one modeling language to define a range of problem domains. First,
we introduce STRIPS: the Stanford Research Institute Problem Solver, which
provides a language, solver, and search procedure for planning problems. This
was introduced in 1971 to program ‘Shakey’ the robot [2]. In STRIPS, we define
a problem as a tuple of ⟨P,A, I,G⟩ with a set of predicates P (things that can
be either true or false, remember these from the logic lecture), a set of actions
A (what can the agent do), an initial state I (atoms that hold at the start of
the problem setting), and a goal state G (atoms that should hold in the end).
Here, we talk about atoms which are ground predicates: they are instantiated
with a specific object from the problem instance. Usually, objects that are not
grounded are named with a capital letter, while specific objects have names
starting with a lower case.

For example, consider the problem shown in Figure 7, where we have to con-
nect the right wires to turn on the power. In this case we have predicates like
(connected Link), (link Link1 Link2), (color Link Color), and more.
These predicates have a type of object, and we can create atoms, like (connected
l1), (link l1 r4), (color l1 purple). Actions can be (connect Link1

Link2) or (turn-on-power), which we can ground to get the concrete action
(connect l2 r2), for example. In the initial state, we know the following (and
more) holds: (power-off) and (color l3 red) and the goal is (power-on).

In the STRIPS formalism, a state is a conjunction of atoms that currently
hold. In other words, planning uses a factored representation of the world, where
a state consists of a vector of (Boolean) attribute values. In a complete state, all
other predicate instantiations are assumed to be false, while in a partial state,

9

Figure 7: Example problem of linking the correct wires to turn on the power.

the other predicates’ values do not matter. Every action a is defined using
the preconditions pre(a) (set of predicates that must hold to execute a), the
negative effects del(a) (set of predicates that are removed from the state), the
positive effects add(a) (set of predicates that are added to the state). You can
optionally also define a cost c(a) of executing the action, which allows you to
control the definition of an optimal plan more specifically.

An action is applicable if the preconditions hold true in the current state. Af-
ter applying action a to state s, we progress the state as follows: progress(s, a) =
(s−del(a))+add(a). In our example from Figure 7, the action (turn-on-power)
has preconditions pre(a) = {(connected r1), (connected r2), (connected r3),
(connected r4)}, and effects del(a) = {(power-off)} and add(a) =
{(power-on)}. Finally, we can stop searching for a plan once we encounter the
goal, when G ⊆ s.

3.1 How to model a problem?

The study of problem modeling is often referred to as Knowledge Engineering
for planning and scheduling. In most cases, you start with a short natural
language description of the problem and you are asked to create a model that
can be solved using a domain-independent solver (a planner in this case). For
example, we get the following description:

In a grid world, there is a truck agent, which needs to pick up
packages and deliver them.

This is pretty vague, and you might ask questions like ‘Do all packages have
the same target cell?’ or ‘Can there be multiple packages at the same cell?’. In

10

many cases, these things are not further specified, so you have to make choices
as the modeler. You could implement different choices and compare the results:
can one model be solved considerably faster than the other or can one model
solve more problem instances? Let’s walk through the steps of creating a model
for this action. We want to derive a set of predicates that define a state as well
as a set of actions (with pre and post-conditions).

We already know that the state space is defined by a grid world, so we can
only move to adjacent cells. So, we need a cell type of object, and we can
define adjacency by creating a predicate like (adjacent Cell1 Cell2). Then,
for a move action we can check in the preconditions whether the cell we want
to move to is adjacent to the current cell. This also requires that we know what
cell we are currently in, so we define an (at Agent Cell) predicate to say the
agent is at a particular cell. So, we conclude we also need a Agent type of
object (or maybe Truck). If we assume that multiple agents and objects can be
at the same cell, then this is all we need for a move action (otherwise we need
an additional check for an empty cell in the precondition).

We are expected to deliver a package, so we need to know where they are at,
which could use the same predicate (at Package Cell) but now for another
object type Package. This is something that can be specified in the initial and
goal state: where packages are located and where they need to go? So, we can
define a pick-up action to pick up a package, with the precondition that both
the agent and the package are currently at the same cell. The post-condition
(or effect) will be that the package is no longer at that cell, but it is now picked
up by the agent, so we need a predicate (carrying Agent Package) that says
whether an agent is carrying a certain package. Finally, we need an action
put-down to drop packages at the desired cell.

If we assume that no agent can carry two packages at the same time, then
we also need to check this before we can pick up a package. Then, we could
something like (not (exists Package) (carrying Agent Package)) which
would say that there is currently no package for which it is true that the agent
is holding p. However, this is often not very efficient to check during solving.
Instead, we can create a predicate (empty Agent) to say that agent is empty,
and not carrying a package. Then, we simply add the updates of this predicate
to the postconditions of pickup and putdown, and we can quickly check whether
this holds before we pick up any package. Constraints like this are very common
in many planning problems, so it is good to think about how you can model
this in a way that a solver can process it efficiently.

3.2 PDDL

The more general planning formalism is called the Planning Domain Definition
Language (PDDL)1, which is the standard planning language in the research
community. PDDL contains the STRIPS formalism but can express more than
STRIPS2, and is thus also a factored world representation. Various planners

1https://planning.wiki/
2https://users.cecs.anu.edu.au/~patrik/pddlman/writing.html

11

https://planning.wiki/
https://users.cecs.anu.edu.au/~patrik/pddlman/writing.html

have been developed that support PDDL, driven by the International Planning
Competition, which is held bi-annually (roughly). Sometimes, predicates are re-
ferred to as fluents, while sometimes fluents are used to express numeric fluents,
which is an extension of PDDL that allows users to define numerical predicates
instead of only boolean predicates. Other PDDL extensions have been devel-
oped too, like the possibility of defining conditional effects or durative actions,
to express more dynamic and temporal problem features.

In PDDL, users define a domain file, and can then specify one or more prob-
lem instance files. The domain specifies the predicates that can be true or false
as well as the possible actions. Actions in PDDL only have preconditions and
effects, so there is no explicit difference between positive and negative effects.
Domains can further define requirements, which are special features that are
used in the domain. An example that is used a lot is typing, which allows
you to specify object types. The problem file instantiates objects (of a type if
you use typing), the atoms for the initial state and the atoms for the goal state.
Finally, domains can also specify constants, which are object instantiations that
occur in all problem instances. However, you can also encode the types of ob-
jects as predicates, the difference is shown in Appendix A. Another extension
of PDDL to define numeric fluents is shown in Appendix B.

An example of the syntax is given in Listing 1 (domain) and Listing 2 (prob-
lem) for a well-known problem in the planning community called Blocksworld
(example situation shown in Figure 8) and subsection 3.3 gives further expla-
nation on this example. PDDL uses a LISP-like syntax, so there are a lot of
brackets used. Other things to note are using ?var for denoting variables in the
domain and using ?var - type to specify the type of a domain (only possible
when using the typing requirement).

Many planners are publicly available. You can have a look at https://

editor.planning.domains where you can edit problems online and choose from
a selection of solvers. This will then output a plan like in Listing 3. However, a
lot of planners use their own parsing, so not all planner will support the same
files, and some may fail on a feasible problem. Most solvers will also output
some statistics, like the number of nodes expanded or the time it needed to
search for the plan.

In the labs, you will use a Python library for PDDL called unified-planning3.
You can write PDDL yourself and parse it using the library, but you can also
use the functions to construct the PDDL as Python objects. As an example,
Listing 4 shows the code for defining this Blocksworld problem in Python using
the library. Note, that here the problem and domain are specified together
instead of separate files. More information on modeling can be found in this
tutorial4.

3https://unified-planning.readthedocs.io/en/latest/
4https://github.com/aiplan4eu/unified-planning/blob/master/docs/notebooks/

01-basic-example.ipynb

12

https://editor.planning.domains
https://editor.planning.domains
https://unified-planning.readthedocs.io/en/latest/
https://github.com/aiplan4eu/unified-planning/blob/master/docs/notebooks/01-basic-example.ipynb
https://github.com/aiplan4eu/unified-planning/blob/master/docs/notebooks/01-basic-example.ipynb

(define (domain blockworld)
(: requirements :strips :typing)
(:types block)
(: predicates

(on ?x - block ?y - block)
(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block)

)
(: action pick -up

:parameters (?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and

(not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))

(: action put -down
:parameters (?x - block)
:precondition (holding ?x)
:effect (and

(not (holding ?x))
(clear ?x)
(handempty)
(ontable ?x)))

(: action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x) (clear ?y))
:effect (and

(not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))

(: action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and

(holding ?x)
(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y))))

)

Listing 1: Domain syntax Blocksworld

13

Figure 8: Blockworld example problem.

(define (problem blocksworld -4-2)
(: domain blocksworld)

(: objects D B A C - block)

(:init
(clear A)
(clear B)
(clear D)
(ontable C)
(ontable A)
(ontable B)
(on D C)
(handempty)

)
(:goal (and (on C A) (on B D)))
)

Listing 2: Problem syntax Blocksworld

(unstack d c)
(put -down d)
(pick -up b)
(stack b d)
(pick -up c)
(stack c a)

Listing 3: Feasible plan for problem above using the ENHSP (2020) planner.

3.3 Blocksworld in PDDL

The Blocksworld problem [4] defines a world with blocks on a table and a hand
that can move blocks, one at a time. The state of the world is defined by the
predicates (given in lines 5-9 of Listing 1)

• (on ?a ?b) to say that a block a is directly on top of a block b,

• (on-table ?a) to say that a block a is a placed on the table,

• (clear ?a) to say that there is no other block on top of a,

• (holding ?a) to say that the hand is holding block a, and

• (handempty) to say that the hand is not holding any block.

14

There are four actions to manipulate the world state. First, we consider pick-up
action (Listing 1, line 11-18), which allows blocks that are currently on-table

to be picked up. The preconditions clarify that the hand can only pick up
something if it is not already holding another bock, and there cannot be another
block on top of the block (because we can only pick up single blocks. The result
of this action is to be holding the block, which means that all the preconditions
no longer hold.

The unstack action (Listing 1, line 27-35) is very similar to the pick-up,
but in this case the hand is not picking up a block from the table, but the hand
picks up a block that is currently on top of another block. We need a different
action because we have to update the clear predicate for the block below the
one that the hand is picking up.

Similarly, we have to actions for dropping a block that the hand is currently
holding, you can either use put-down to place it on the table, or stack to put
it on top of another block.

The problem file specifies that in the example shown in Figure 8, there are.
four blocks: A,B,C,D (line 3, Listing 2. We can see that in the initial state,
three blocks are on the table, while D is stacked on top of C. Blocksworld
instances generally start in a state where the hand is not holding anything. The
goal state is only partially defined: C must be on top of A, and B must be
on top of D, but there is no specification saying that A and D must be on the
table. Many Blocksworld instances will have goal state with just one big tower.

Finally, we can see that the plan given in Listing 3 is optimal, we cannot
find a plan that is shorter to achieve to achieve this goal.

References

[1] Malte Helmert and Hauke Lasinger. “The Scanalyzer domain: Greenhouse
logistics as a planning problem”. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling. Vol. 20. 2010, pp. 234–
237.

[2] Bertram Raphael. Robot Research At Stanford Research Institute. Tech.
rep. 64. Artificial Intelligence Centre, 1971.

[3] Wheeler Ruml et al. “On-line planning and scheduling: An application to
controlling modular printers”. In: Journal of Artificial Intelligence Research
40 (2011), pp. 415–468.

[4] John Slaney and Sylvie Thiébaux. “Blocks World revisited”. In: Artifi-
cial Intelligence 125.1–2 (Jan. 2001), pp. 119–153. url: https://www.
sciencedirect.com/science/article/pii/S0004370200000795.

15

https://www.sciencedirect.com/science/article/pii/S0004370200000795
https://www.sciencedirect.com/science/article/pii/S0004370200000795

import os
from unified_planning.io import PDDLReader , PDDLWriter
from unified_planning.shortcuts import *
from unified_planning.model import *

First we define all the components of the domain

With unified_planning , you do not have to specify requirements explicitly .

Types can be expressed as follows , where the argument is the string name.
Block = UserType("Block")

You specify predicates using hte Fluent object with the following
parameters : name in string form , the type of predicate (in this course
we stick to boolean predicates only), and then as many more parameters
as the predicate has , in this case 2 arguments. For each parameter , you
can specify the name and then the type (using the defined UserTypes),
the name you use will be used in the PDDL domain as ?var

on = Fluent(’on’, BoolType (), b1=Block , b2=Block)
ontable = Fluent(’ontable ’, BoolType (), b=Block)
clear = Fluent(’clear’, BoolType (), b=Block)
holding = Fluent(’holding ’, BoolType (), b=Block)
handempty = Fluent(’handempty ’, BoolType ()) # this doesn ’t need any object

parameters

Now we define the actions. We do not use any special type of actions , so we
only consider InstantaneousActions .

pickup = InstantaneousAction(’pick -up’, b=Block)
b = pickup.parameter(’b’) # Specify the parameters for use in preconditions

and effects
pickup.add_precondition(ontable(b)) # Define preconditions
pickup.add_precondition(clear(b))
pickup.add_precondition(handempty ())
pickup.add_effect(holding(b), True) # Define effect values
pickup.add_effect(handempty (), False)
pickup.add_effect(clear(b), False)
pickup.add_effect(ontable(b), False)

putdown = InstantaneousAction(’put -down’, b=Block)
b = putdown.parameter(’b’)
putdown.add_precondition(holding(b))
putdown.add_effect(holding(b), False)
putdown.add_effect(ontable(b), True)
putdown.add_effect(clear(b), True)
putdown.add_effect(handempty (), True)

stack = InstantaneousAction(’stack’, b1=Block , b2=Block)
b1 = stack.parameter(’b1’)
b2 = stack.parameter(’b2’)
stack.add_precondition(holding(b1))
stack.add_precondition(clear(b2))
stack.add_effect(on(b1, b2), True)
stack.add_effect(clear(b1), True)
stack.add_effect(clear(b2), False)
stack.add_effect(holding(b1), False)
stack.add_effect(handempty (), True)

unstack = InstantaneousAction(’unstack ’, b1=Block , b2=Block)
b1 = unstack.parameter(’b1’)
b2 = unstack.parameter(’b2’)
unstack.add_precondition(on(b1 , b2))
unstack.add_precondition(clear(b1))
unstack.add_precondition(handempty ())
unstack.add_effect(on(b1, b2), False)
unstack.add_effect(clear(b1), False)
unstack.add_effect(clear(b2), True)

16

unstack.add_effect(handempty (), False)
unstack.add_effect(holding(b1), True)

Now define the problem adding all parts
problem = Problem(’blocksworld ’)
You can add multiple fluents at once by adding the object
problem.add_fluents ([handempty , clear])
Or one at a time if you want to define the initial value
problem.add_fluent(on , default_initial_value=False)
problem.add_fluent(ontable , default_initial_value=False)
problem.add_fluent(holding , default_initial_value=False)
Similarly for actions
problem.add_action(pickup)
problem.add_actions ([putdown , stack , unstack])

We can now add the problem instance information .
We can add objects , by creating an object of a certain UserType
a = Object(’a’, Block)
b = Object(’b’, Block)
c = Object(’c’, Block)
d = Object(’d’, Block)
problem.add_object(a)
problem.add_objects ([b, c, d])
We also have to define the initial values for all predicates . Because we

used the default_initial_value when adding fluents to the domain , we
only need to specify true values

problem.set_initial_value(clear(a), True)
problem.set_initial_value(clear(b), True)
problem.set_initial_value(clear(c), False)
problem.set_initial_value(clear(d), True)
problem.set_initial_value(ontable(a), True)
problem.set_initial_value(ontable(b), True)
problem.set_initial_value(ontable(c), True)
problem.set_initial_value(on(d, c), True)
problem.set_initial_value(handempty (), True)
And we have to define the goal
problem.add_goal(on(c, a))
problem.add_goal(on(b, d))

We can now solve the problem
with OneshotPlanner(name=’fast -downward ’) as planner: # also ‘pip install

unified_planning [engines]‘
result = planner.solve(problem)
if result.status == up.engines.PlanGenerationResultStatus.
SOLVED_SATISFICING:

print("Fast Downward returned: %s" % result.plan)
else:

print("No plan found.")

We can also write the problem to a file
writer = PDDLWriter(problem)
writer.write_domain(os.getcwd () + ’/blocksworld_domain.pddl’)
writer.write_problem(os.getcwd () + ’/blocksworld_problem.pddl’)

And if you define your model manually in PDDL you can read in the problem
as follows.

reader = PDDLReader ()
problem_read = reader.parse_problem(os.getcwd () + ’/blocksworld_domain.pddl’,

os.getcwd () + ’/blocksworld_problem.pddl’)
with OneshotPlanner(name=’fast -downward ’) as planner: # also ‘pip install

unified_planning [engines]‘
result = planner.solve(problem_read)
if result.status == up.engines.PlanGenerationResultStatus.
SOLVED_SATISFICING:

print("Fast Downward returned: %s" % result.plan)
else:

17

print("No plan found.")

Listing 4: Defining a PDDL model in the Unified Planning Python library.

A Typing

A.1 Using a requirement

With the requirement, you can specify the use of object types. These are defined
with a ‘-’ and work horizontally: all names before a dash are of the same type.
This is true for both the type definition and the use in preconditions for example.

(: requirements :typing)

(:types

vehicle location package

car truck - vehicle)

(: objects

truck1 - truck

package1 - package)

(: predicates

(at ?v - vehicle ?l - location)

(carry ?t - truck ?p - package)

(move ?l1 ?l2 - location))

A.2 Using predicates

When you don’t want to use the requirement for typing, for example because
a planner may not support it (although most do), then you can also use pred-
icates. These are then defined in both the init and you also use them in the
precondition to make sure the correct objects are inferred.

(: predicates

(at ?v ?l)

(carry ?t ?p)

(package ?p)

(truck ?c)

(vehicle ?v))

(: objects truck1 package1 loc1 loc2)

(:init

(truck truck1)

(package package1))

(: precondition (and (carry ?t ?p)

(truck ?t) (package ?p)

))

B Numeric Fluents

Numeric fluents allow users to specify values. They can be global (like battery
below, or use parameters (like distances). They can be used both in precon-
ditions and effects, and need to be initialized with a value in the init.

18

(: predicates (at ?loc) ...)

(: functions

(distance ?loc1 ?loc2)

(battery))

(:init

(distance l1 l2 50)

(battery 100))

(: precondition

(> (battery) 0)

(at ?l2))

(: effect

(decrease (battery) (distance ?l1 ?l2))

)

19

	What is Planning?
	Types of planning
	Solving a planning problem

	Searching for solutions
	Search problem
	State spaces
	Search algorithms (not in lecture)
	Uninformed search
	Informed Search

	Search strategies

	Modeling problems
	How to model a problem?
	PDDL
	Blocksworld in PDDL

	Typing
	Using a requirement
	Using predicates

	Numeric Fluents

