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Who am I?

Issa Hanou
PhD candidate Algorithmics group
Working on Planning and Scheduling for Railway logistics

Figure: Shunting yard in the Netherlands.
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Outline

1 Introduction

2 Solving a planning problem

3 State space

4 Searching for plans

5 Modeling search problems

6 PDDL

7 Conclusion

PDDL: Planning Domain Definition Language

Issa Hanou Delft University of Technology

AI Planning 3/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Story so far...

Search Problems

Logical Reasoning Problems

Constraint Satisfaction Problems

Bayesian Networks

Utility

� Time component

� Real-World Problems
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What is Planning?

What do you think planning is?
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Examples of Planning
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What is Planning?

Planning is the art and practice of thinking before acting.
–Patrik Haslum
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Learning Objectives

1 Explain what is planning

2 Explain different approaches to finding plans

3 Read planning problems in the Planning Domain Definition Language (PDDL)

4 Model a problem in PDDL terms (semantically, not syntactically)

5 Reason whether a model or plan is correct and effective
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What is a Plan?

(pickup robot2 bowl)

(putdown robot2 bowl ontable)

(scoop robot1 corn)

(putdown robot1 corn inbowl)

(pickup robot2 mushrooms)

(putdown robot2 mushrooms inbowl)

...
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Types of Planning

Fully Observable Deterministic Partially Observable Deterministic

Fully Observable Non Deterministic Partially Observable Non Deterministic

Markov Decision Process
Partially Observable

Markov Decision Process

Partial Observability

Non-deterministic

Probabilistic
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Modeling vs Solving vs Executing

Figure: Planning overview.

Issa Hanou Delft University of Technology

AI Planning 11/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Modeling vs Solving vs Executing

Figure: Planning overview - focus in lecture.
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Domain-Independent Planning

Domain-Independent Modelling Language

Planner #1 Planner #2 .. Planner #n

Figure: Domain-Independent Planning.
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Search

(a) Reflex agent.

(b) Planning agent. (c) Agent with a plan.

Issa Hanou Delft University of Technology

AI Planning 13/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Search

(a) Reflex agent. (b) Planning agent.

(c) Agent with a plan.

Issa Hanou Delft University of Technology

AI Planning 13/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Search

(a) Reflex agent. (b) Planning agent. (c) Agent with a plan.

Issa Hanou Delft University of Technology

AI Planning 13/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Search Problem

Definition

A search problem consists of:

A state space

A successor function

A start state and goal test

A solution is a sequence of actions (a plan) that transforms the start state into a goal
state
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Modeling Search Problems
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Example Search Problems

Amsterdam

Schiphol

Leiden Utrecht

Den Haag Delft Rotterdam

2030

20 25
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35

Figure: Partial railway network Netherlands.

Shows time between to travel between two cities

Realistic model?
Goal-dependent: Shortest path Delft to Utrecht

Other factors?

Transfer time

Timetables

(Expected) Train capacity

...
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Solving a Planning Problem

Questions so far?
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State Space Size

Figure: PacMan problem example with a 12× 10 grid.

World state

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: North, East, South, West
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State Space Size

Figure: PacMan problem example with a 12× 10 grid.

World state

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: North, East, South, West

How many states?

� Total number of states:
120 ∗ (230) ∗ (122) ∗ 4 = 7.4 · 1013
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State Space Size

Figure: PacMan problem example with a 12× 10 grid.

World state

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: North, East, South, West

How many states if you only want to
avoid ghosts?
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State Space Size

Figure: PacMan problem example with a 12× 10 grid.

World state

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: North, East, South, West

How many states if you only want to
avoid ghosts?

� Total number of states:
120 ∗ (122) ∗ 4 = 69120
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State Space Example

Amsterdam

Brussels

Berlin

Copenhagen

Paris
Zurich

Vienna

MadridLisbon
Rome

Figure: Logistics problem in Western Europe.

Transport packages

Take trains between connected cities

Can fly longer distances

What does state space look like?
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State Space Example Answers

Amsterdam

Brussels

Berlin

Copenhagen

Paris
Zurich

Vienna

MadridLisbon
Rome

Figure: Logistics problem in Western Europe.

State space components

Connected cities

Location per city

Package objects (in locations)

Set of trains and airplanes

connected in state space?

� State space versus successor function
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State Space Graph

S

d

p q

h

e

b

a

c

r

f

G

Figure: State space graph for search problem: find path from S to G .
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Search Tree

S

e p

qh r

p q

q

f

c G

a

d

cb e

h r

f

c G

aa

a

p q

q

Figure: Search tree for previous search problem.

Issa Hanou Delft University of Technology

AI Planning 22/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q
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f

G

(a) State space graph.

S

d
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a

c

a
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q
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a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Forward Search

start S goal G

ugF (u) v

gF (v)

w

gF (w)

gF (G )

gF (n) is cost of best-known path from start to n.
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Backward Search

start S goal G

w gB(w)v

gB(v)

u

gB(u)

gB(S)

gB(n) is cost of best-known path from n to goal .
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Bidirectional Search

start S goal G

ugF (S) w gB(w)v

gF (u) gB(v)

What direction to expand next?

gF (n) is cost of best-known path from start to n.
gB(n) is cost of best-known path from n to goal .
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Planning as Constraint Satisfaction Problem

State is a black box: arbitrary data structure

Goal test is a function: set of constraints

Use general-purpose algorithms

1 Propositionalize initial state

2 Actiont variable

3 Goal check
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Solving Planning Problems

Questions so far?
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STRIPS

Stanford Research Institute Problem Solver

Language + Solver + Search procedure

Shakey the robot (1971)

Factored representation of the world

Figure: Shakey the robot.
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STRIPS: The Language

Problem: ⟨P,A, I ,G ⟩

P: set of predicates

A: set of actions

I : initial state

G : goal state

� What can true of false

� What can agent do

� Atoms that hold at start of problem setting

� Atoms that the agent wants to hold eventually

Predicate: function over domain objects to truth-values (at Agent Location).
Atom: predicate instantiation with specific objects (at shakey table1).
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Example

Problem: Connect the right wires and then turn on the power.

What are the predicates? (connected Link)

What are the actions?

What is the initial state?

What is the goal?

Figure: Wire linking problem.
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Actions: (connect Link1 Link2), (turn-on),
(turn-off), (disconnect Link1 Link2)

Initially: (connected l1), (link l1 r4),
(power-off), (color l3 red), (color r1 red),
...

Goal: (power-on) Figure: Wire linking problem.
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States and Actions

State

State is a conjunction of atoms that currently hold.

Complete state: all other predicate instantiations are assumed to be false.

Partial state: doesn’t matter if the other predicate instantiations are true/false.

Action

Action a ∈ A defines the conditions and effects of moving between states.

pre(a): Set of predicates that must hold to execute a

del(a): Set of atoms removed from state after executing a

add(a): Set of atoms added to state after executing a
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Action Applicability

Can we perform this action in the current state?
pre(a) ⊆ s

Figure: Current state.

Action: (turn-on)

pre(a):
{(connected r1), (connected r2),
(connected r3), (connected r4)}
del(a): {(power-off)}
add(a): {(power-on)}
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Action Progression

What happens if we perform this action in the current state?
progress(s, a) =

(
s − del(a)

)
∪ add(a)

Figure: Current state.

Action: (connect l2 r2)

pre(a): {(not (connected l2)),
(not (connected r2)),
(color l2 c) (color r2 c)}
del(a): {(not (connected l2)),
(not (connected r2))}
add(a):
{(connected l2) (connected r2)}
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Goal achievement

When are we done?
G ⊆ s

Figure: Current state.

Action: (turn-on)

pre(a):
{(connected r1), (connected r2),
(connected r3), (connected r4)}
del(a): {(power-off)}
add(a): {(power-on)}
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Modeling Search Problems

Questions so far?
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The Planning Domain Definition Language (PDDL)

PDDL: A common language for arbitrary problem specs

Contains the STRIPS formalism

Many variations for various formalisms: extensions with more expressiveness

Supported by a variety of planners

Driven by the (roughly) bi-annual International Planning Competition

Lisp-like syntax (many (((brackets!))))

Learn to read
Can use tools to write (Python library)
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PDDL Input Files

Domain Problem

Figure: PDDL structure.

Domain

Requirements

Types

Predicates

Actions

Problem Instance

Objects

Initial state

Goal atoms
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Domain Specification in PDDL

Figure: Knights tour problem.
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Domain Specification in PDDL

Figure: Knights tour problem.

(define (domain knights -tour)

(: requirements :strips)

(: predicates

(at ?square)

(visited ?square)

(valid_move ?square_from ?square_to)

)

(: action move

:parameters (? current ?to)

:precondition (and (at ?current)

(valid_move ?current ?to)

(not (visited ?to)))

:effect (and (not (at ?current))

(at ?to) (visited ?to))

))
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Problem Instance Specification in PDDL

(define (problem knight -tour)

(: domain knights -tour)

(: objects

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

...

h1 h2 h3 h4 h5 h6 h7 h8

)

(:init

(at a8)

(visited a8)

(valid_move a8 b6)

(valid_move b6 a8)

(valid_move a8 c7)

(valid_move c7 a8)

...

)

(:goal (and

(visited a1)

(visited a2)

...

(visited h8)

)))
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Typing

1. Typing requirement

(: requirements typing)

(:types

vehicle location package

car truck - vehicle)

(:init

truck1 - truck

package1 - package)

(: predicates

(at ?v - vehicle ?l - location)

(carry ?t - truck ?p - package)

(move ?l1 ?l2 - location))

2. Type predicates

(: predicates

(at ?v ?l)

(carry ?t ?p)

(package ?p)

(truck ?c)

(vehicle ?v))

(: objects truck1 package1 loc1 loc2)

(:init

(truck truck1)

(package package1))

(: precondition (and (carry ?t ?p)

(truck ?t) (package ?p)

))
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PDDL

Questions so far?
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Exercise: Missing precondition

Ferry boat domain

Three actions: (board ?car ?loc),

(sail ?loc1 ?loc2), (debark ?car ?loc)

Predicates: (car ?car), (location ?loc),
(at-ferry ?loc), (at ?car ?loc),

(empty-ferry), (on-ferry ?car)

What precondition is missing for board?

� 2 min for yourself, then 1 min discuss with your
neighbor

(: action board

:parameters (?car ?loc)

:precondition (and

(car ?car)

(location ?loc)

(at ?car ?loc)

(empty -ferry))

:effect (and (on -ferry ?car)

(not (at ?car ?loc))

(not (empty -ferry)))

)
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Solution: Missing precondition

Ferry boat domain

Three actions: (board ?car ?loc),

(sail ?loc1 ?loc2), (debark ?car ?loc)

Predicates: (car ?car), (location ?loc),
(at-ferry ?loc), (at ?car ?loc),

(empty-ferry), (on-ferry ?car)

Missing precondition (at-ferry ?loc)

(: action board

:parameters (?car ?loc)

:precondition (and

(car ?car)

(location ?loc)

(at ?car ?loc)

(at-ferry ?loc)

(empty -ferry))

:effect (and (on -ferry ?car)

(not (at ?car ?loc))

(not (empty -ferry)))

)
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Exercise: Spot the mistake

Towers of Hanoi

Discs stacked on pegs (on ?disc ?peg)

Discs can only be on top of larger discs
(smaller ?top ?bottom)

Move one disc at a time

Only keep track of disc position: on other disc or
on peg (on ?d1 ?d2)

Clear discs that have no disc on top (clear ?d)

Goal: have the same stack on the final pole
(on ?smallest ?small)

Figure: Towers of Hanoi.

� 2 min for yourself, then 1 min
discuss with your neighbor
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(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))))

)

Figure: Towers of Hanoi.
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discuss with your neighbor
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Solution: Missing effect

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

Figure: Towers of Hanoi.
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Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d3
d2
d1

Next: (move d1 d2 c)

Next: (move d2 d3 b)

Next: (move d1 c d2)

Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)
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Tutorial: Valid plan

(define (domain hanoi)
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(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))
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Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)
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Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d3
d2
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Next:

(move d1 d2 c)

Next:

(move d2 d3 b)

Next:

(move d1 c d2)

Next:

(move d3 a c)

Next:
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(move d2 b d3)

Next:

(move d1 a d2)
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PDDL Extension: numeric fluents

Predicates vs fluents

Express numeric properties

Precondition: =, >, <

Effect: increase,
decrease

Example: package delivery
domain - partial domain

(: predicates (at ?loc) ... )

(: functions

(distance ?loc1 ?loc2)

(battery))

(:init

(distance l1 l2 50)

(battery 100))

(: precondition

(> (battery) 0)

(at ?l2))

(: effect

(decrease (battery) (distance ?l1 ?l2)

)

)
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Exercise: Modeling in PDDL

Goal: get everyone to Delft
Initial: Train starts at Amsterdam,
train capacity 60�, initial demand in
blue

What are the predicates?

What are the actions?

What is the initial state?

What is the goal?

Discuss with neighbour (10 min)

Amsterdam 20�

Schiphol25�

Leiden15� Utrecht 20�

Den Haag15� Delft Rotterdam 20�

20
30

20

25
30

10
20

10 10

35
4035

Figure: Problem setting.
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Relation to Other Lectures

Search, Inference, Learning, and Optimization

Effectiveness for solving planning problems
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Learning Objectives

1 Explain what planning is

2 Explain different approaches to finding plans

3 Read planning problems in PDDL

4 Model a problem in PDDL terms (semantically, not syntactically)

5 Reason whether a model or plan is correct and effective
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Conclusion

Planning problems in the real world

Planning as a search problem

How to model a planning problem

Questions?
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Next Steps & Further Information

Homework

Homework exercises week 4

Exam material

Lecture notes

Lecture slides

Homework

Extra information
Book: Russel & Norvig: Artificial Intelligence, Ch.11
http://planning.wiki/ General info on PDDL and planners
http://editor.planning.domains/ Online editor for PDDL
https://unified-planning.readthedocs.io/en/latest/ Python library for
PDDL writing and solving

Questions? i.k.hanou@tudelft.nl
Issa Hanou Delft University of Technology

AI Planning 53/53
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