
AI Planning
Probabilistic AI and Reasoning - Lecture 7

Issa Hanou

Delft University of Technology

September 23, 2024

These lecture slides are inspired by the lectures on AI Planning by Christian Muise (Queen’s University)



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Who am I?

Issa Hanou
PhD candidate Algorithmics group
Working on Planning and Scheduling for Railway logistics

Figure: Shunting yard in the Netherlands.

Issa Hanou Delft University of Technology

AI Planning 2/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Outline

1 Introduction

2 Solving a planning problem

3 State space

4 Searching for plans

5 Modeling search problems

6 PDDL

7 Conclusion

PDDL: Planning Domain Definition Language

Issa Hanou Delft University of Technology

AI Planning 3/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Story so far...

Search Problems

Logical Reasoning Problems

Constraint Satisfaction Problems

Bayesian Networks

Utility

� Time component

� Real-World Problems

Issa Hanou Delft University of Technology

AI Planning 4/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Story so far...

Search Problems

Logical Reasoning Problems

Constraint Satisfaction Problems

Bayesian Networks

Utility

� Time component

� Real-World Problems

Issa Hanou Delft University of Technology

AI Planning 4/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

What is Planning?

What do you think planning is?

Issa Hanou Delft University of Technology

AI Planning 5/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Examples of Planning

Issa Hanou Delft University of Technology

AI Planning 6/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

What is Planning?

Planning is the art and practice of thinking before acting.
–Patrik Haslum

Issa Hanou Delft University of Technology

AI Planning 7/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Learning Objectives

1 Explain what is planning

2 Explain different approaches to finding plans

3 Read planning problems in the Planning Domain Definition Language (PDDL)

4 Model a problem in PDDL terms (semantically, not syntactically)

5 Reason whether a model or plan is correct and effective

Issa Hanou Delft University of Technology

AI Planning 8/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

What is a Plan?

(pickup robot2 bowl)

(putdown robot2 bowl ontable)

(scoop robot1 corn)

(putdown robot1 corn inbowl)

(pickup robot2 mushrooms)

(putdown robot2 mushrooms inbowl)

...

Issa Hanou Delft University of Technology

AI Planning 9/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Types of Planning

Fully Observable Deterministic Partially Observable Deterministic

Fully Observable Non Deterministic Partially Observable Non Deterministic

Markov Decision Process
Partially Observable

Markov Decision Process

Partial Observability

Non-deterministic

Probabilistic

Issa Hanou Delft University of Technology

AI Planning 10/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Types of Planning

Fully Observable Deterministic Partially Observable Deterministic

Fully Observable Non Deterministic Partially Observable Non Deterministic

Markov Decision Process
Partially Observable

Markov Decision Process

Partial Observability

Non-deterministic

Probabilistic

Issa Hanou Delft University of Technology

AI Planning 10/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Modeling vs Solving vs Executing

Figure: Planning overview.

Issa Hanou Delft University of Technology

AI Planning 11/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Modeling vs Solving vs Executing

Figure: Planning overview - focus in lecture.

Issa Hanou Delft University of Technology

AI Planning 11/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Domain-Independent Planning

Domain-Independent Modelling Language

Planner #1 Planner #2 .. Planner #n

Figure: Domain-Independent Planning.

Issa Hanou Delft University of Technology

AI Planning 12/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Search

(a) Reflex agent.

(b) Planning agent. (c) Agent with a plan.

Issa Hanou Delft University of Technology

AI Planning 13/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Search

(a) Reflex agent. (b) Planning agent.

(c) Agent with a plan.

Issa Hanou Delft University of Technology

AI Planning 13/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Search

(a) Reflex agent. (b) Planning agent. (c) Agent with a plan.

Issa Hanou Delft University of Technology

AI Planning 13/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Search Problem

Definition

A search problem consists of:

A state space

A successor function

A start state and goal test

A solution is a sequence of actions (a plan) that transforms the start state into a goal
state

Issa Hanou Delft University of Technology

AI Planning 14/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Modeling Search Problems

Issa Hanou Delft University of Technology

AI Planning 15/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Search Problems

Amsterdam

Schiphol

Leiden Utrecht

Den Haag Delft Rotterdam

2030

20 25

30

10
20

10 10

35
40

35

Figure: Partial railway network Netherlands.

Shows time between to travel between two cities

Realistic model?
Goal-dependent: Shortest path Delft to Utrecht

Other factors?

Transfer time

Timetables

(Expected) Train capacity

...

Issa Hanou Delft University of Technology

AI Planning 16/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Search Problems

Amsterdam

Schiphol

Leiden Utrecht

Den Haag Delft Rotterdam

2030

20 25

30

10
20

10 10

35
40

35

Figure: Partial railway network Netherlands.

Shows time between to travel between two cities

Realistic model?

Goal-dependent: Shortest path Delft to Utrecht

Other factors?

Transfer time

Timetables

(Expected) Train capacity

...

Issa Hanou Delft University of Technology

AI Planning 16/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Search Problems

Amsterdam

Schiphol

Leiden Utrecht

Den Haag Delft Rotterdam

2030

20 25

30

10
20

10 10

35
40

35

Figure: Partial railway network Netherlands.

Shows time between to travel between two cities

Realistic model?
Goal-dependent:

Shortest path Delft to Utrecht

Other factors?

Transfer time

Timetables

(Expected) Train capacity

...

Issa Hanou Delft University of Technology

AI Planning 16/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Search Problems

Amsterdam

Schiphol

Leiden Utrecht

Den Haag Delft Rotterdam

2030

20 25

30

10
20

10 10

35
40

35

Figure: Partial railway network Netherlands.

Shows time between to travel between two cities

Realistic model?
Goal-dependent: Shortest path Delft to Utrecht

Other factors?

Transfer time

Timetables

(Expected) Train capacity

...

Issa Hanou Delft University of Technology

AI Planning 16/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Search Problems

Amsterdam

Schiphol

Leiden Utrecht

Den Haag Delft Rotterdam

2030

20 25

30

10
20

10 10

35
40

35

Figure: Partial railway network Netherlands.

Shows time between to travel between two cities

Realistic model?
Goal-dependent: Shortest path Delft to Utrecht

Other factors?

Transfer time

Timetables

(Expected) Train capacity

...

Issa Hanou Delft University of Technology

AI Planning 16/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Solving a Planning Problem

Questions so far?

Issa Hanou Delft University of Technology

AI Planning 17/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Size

Figure: PacMan problem example with a 12× 10 grid.

World state

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: North, East, South, West

Issa Hanou Delft University of Technology

AI Planning 18/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Size

Figure: PacMan problem example with a 12× 10 grid.

World state

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: North, East, South, West

How many states?

Issa Hanou Delft University of Technology

AI Planning 18/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Size

Figure: PacMan problem example with a 12× 10 grid.

World state

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: North, East, South, West

How many states?

� Total number of states:
120 ∗ (230) ∗ (122) ∗ 4 = 7.4 · 1013

Issa Hanou Delft University of Technology

AI Planning 18/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Size

Figure: PacMan problem example with a 12× 10 grid.

World state

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: North, East, South, West

How many states if you only want to
avoid ghosts?

Issa Hanou Delft University of Technology

AI Planning 18/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Size

Figure: PacMan problem example with a 12× 10 grid.

World state

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: North, East, South, West

How many states if you only want to
avoid ghosts?

� Total number of states:
120 ∗ (122) ∗ 4 = 69120

Issa Hanou Delft University of Technology

AI Planning 18/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Example

Amsterdam

Brussels

Berlin

Copenhagen

Paris
Zurich

Vienna

MadridLisbon
Rome

Figure: Logistics problem in Western Europe.

Transport packages

Take trains between connected cities

Can fly longer distances

What does state space look like?

Issa Hanou Delft University of Technology

AI Planning 19/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Example Answers

Amsterdam

Brussels

Berlin

Copenhagen

Paris
Zurich

Vienna

MadridLisbon
Rome

Figure: Logistics problem in Western Europe.

State space components

Connected cities

Location per city

Package objects (in locations)

Set of trains and airplanes

connected in state space?

� State space versus successor function

Issa Hanou Delft University of Technology

AI Planning 20/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Example Answers

Amsterdam

Brussels

Berlin

Copenhagen

Paris
Zurich

Vienna

MadridLisbon
Rome

Figure: Logistics problem in Western Europe.

State space components

Connected cities

Location per city

Package objects (in locations)

Set of trains and airplanes

connected in state space?

� State space versus successor function

Issa Hanou Delft University of Technology

AI Planning 20/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Example Answers

Amsterdam

Brussels

Berlin

Copenhagen

Paris
Zurich

Vienna

MadridLisbon
Rome

Figure: Logistics problem in Western Europe.

State space components

Connected cities

Location per city

Package objects (in locations)

Set of trains and airplanes

connected in state space?

� State space versus successor function

Issa Hanou Delft University of Technology

AI Planning 20/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

State Space Graph

S

d

p q

h

e

b

a

c

r

f

G

Figure: State space graph for search problem: find path from S to G .

Issa Hanou Delft University of Technology

AI Planning 21/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Search Tree

S

e p

qh r

p q

q

f

c G

a

d

cb e

h r

f

c G

aa

a

p q

q

Figure: Search tree for previous search problem.

Issa Hanou Delft University of Technology

AI Planning 22/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example Tree Search

S

d

b

a

c

e

p q

h r

f

G

(a) State space graph.

S

d

b

a

c

a

e

h

p q

q

r

f

c

a

G

e p

qh r

p q

q

f

c G

a

(b) Search tree.

S

S → d

S → d → b

S → d → b → a

S → d → c → a

S → d → e

S → d → e → h → ...

S → d → e → r

S → d → e → r → f

S → d → e → r → f → c

S → d → e → r → f → G

Issa Hanou Delft University of Technology

AI Planning 23/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Forward Search

start S goal G

ugF (u) v

gF (v)

w

gF (w)

gF (G )

gF (n) is cost of best-known path from start to n.

Issa Hanou Delft University of Technology

AI Planning 24/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Forward Search

start S goal G

ugF (u)

v

gF (v)

w

gF (w)

gF (G )

gF (n) is cost of best-known path from start to n.

Issa Hanou Delft University of Technology

AI Planning 24/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Forward Search

start S goal G

ugF (u) v

gF (v)

w

gF (w)

gF (G )

gF (n) is cost of best-known path from start to n.

Issa Hanou Delft University of Technology

AI Planning 24/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Forward Search

start S goal G

ugF (u) v

gF (v)

w

gF (w)

gF (G )

gF (n) is cost of best-known path from start to n.

Issa Hanou Delft University of Technology

AI Planning 24/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Forward Search

start S goal G

ugF (u) v

gF (v)

w

gF (w)

gF (G )

gF (n) is cost of best-known path from start to n.

Issa Hanou Delft University of Technology

AI Planning 24/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Backward Search

start S goal G

w gB(w)v

gB(v)

u

gB(u)

gB(S)

gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 25/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Backward Search

start S goal G

w gB(w)

v

gB(v)

u

gB(u)

gB(S)

gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 25/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Backward Search

start S goal G

w gB(w)v

gB(v)

u

gB(u)

gB(S)

gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 25/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Backward Search

start S goal G

w gB(w)v

gB(v)

u

gB(u)

gB(S)

gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 25/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Backward Search

start S goal G

w gB(w)v

gB(v)

u

gB(u)

gB(S)

gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 25/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Bidirectional Search

start S goal G

ugF (S) w gB(w)v

gF (u) gB(v)

What direction to expand next?

gF (n) is cost of best-known path from start to n.
gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 26/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Bidirectional Search

start S goal G

ugF (S)

w gB(w)v

gF (u) gB(v)

What direction to expand next?

gF (n) is cost of best-known path from start to n.
gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 26/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Bidirectional Search

start S goal G

ugF (S) w gB(w)

v

gF (u) gB(v)

What direction to expand next?

gF (n) is cost of best-known path from start to n.
gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 26/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Bidirectional Search

start S goal G

ugF (S) w gB(w)v

gF (u)

gB(v)

What direction to expand next?

gF (n) is cost of best-known path from start to n.
gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 26/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Bidirectional Search

start S goal G

ugF (S) w gB(w)v

gF (u) gB(v)

What direction to expand next?

gF (n) is cost of best-known path from start to n.
gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 26/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Bidirectional Search

start S goal G

ugF (S) w gB(w)v

gF (u) gB(v)

What direction to expand next?

gF (n) is cost of best-known path from start to n.
gB(n) is cost of best-known path from n to goal .

Issa Hanou Delft University of Technology

AI Planning 26/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Planning as Constraint Satisfaction Problem

State is a black box: arbitrary data structure

Goal test is a function: set of constraints

Use general-purpose algorithms

1 Propositionalize initial state

2 Actiont variable

3 Goal check

Issa Hanou Delft University of Technology

AI Planning 27/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Planning as Constraint Satisfaction Problem

State is a black box: arbitrary data structure

Goal test is a function: set of constraints

Use general-purpose algorithms

1 Propositionalize initial state

2 Actiont variable

3 Goal check

Issa Hanou Delft University of Technology

AI Planning 27/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Solving Planning Problems

Questions so far?

Issa Hanou Delft University of Technology

AI Planning 28/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

STRIPS

Stanford Research Institute Problem Solver

Language + Solver + Search procedure

Shakey the robot (1971)

Factored representation of the world

Figure: Shakey the robot.

Issa Hanou Delft University of Technology

AI Planning 29/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

STRIPS: The Language

Problem: ⟨P,A, I ,G ⟩

P: set of predicates

A: set of actions

I : initial state

G : goal state

� What can true of false

� What can agent do

� Atoms that hold at start of problem setting

� Atoms that the agent wants to hold eventually

Predicate: function over domain objects to truth-values (at Agent Location).
Atom: predicate instantiation with specific objects (at shakey table1).

Issa Hanou Delft University of Technology

AI Planning 30/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

STRIPS: The Language

Problem: ⟨P,A, I ,G ⟩

P: set of predicates

A: set of actions

I : initial state

G : goal state

� What can true of false

� What can agent do

� Atoms that hold at start of problem setting

� Atoms that the agent wants to hold eventually

Predicate: function over domain objects to truth-values (at Agent Location).
Atom: predicate instantiation with specific objects (at shakey table1).

Issa Hanou Delft University of Technology

AI Planning 30/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example

Problem: Connect the right wires and then turn on the power.

What are the predicates? (connected Link)

What are the actions?

What is the initial state?

What is the goal?

Figure: Wire linking problem.

Issa Hanou Delft University of Technology

AI Planning 31/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example

Problem: Connect the right wires and then turn on the power.

Predicates: (connected Link), (power-on),
(link Link1 Link2), (color Link Color),
(power-off)

What are the actions?

What is the initial state?

What is the goal?
Figure: Wire linking problem.

Issa Hanou Delft University of Technology

AI Planning 31/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example

Problem: Connect the right wires and then turn on the power.

Predicates: (connected Link), (power-on),
(link Link1 Link2), (color Link Color),
(power-off)

Actions: (connect Link1 Link2), (turn-on),
(turn-off), (disconnect Link1 Link2)

What is the initial state?

What is the goal?
Figure: Wire linking problem.

Issa Hanou Delft University of Technology

AI Planning 31/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example

Problem: Connect the right wires and then turn on the power.

Predicates: (connected Link), (power-on),
(link Link1 Link2), (color Link Color),
(power-off)

Actions: (connect Link1 Link2), (turn-on),
(turn-off), (disconnect Link1 Link2)

Initially: (connected l1), (link l1 r4),
(power-off), (color l3 red), (color r1 red),
...

What is the goal? Figure: Wire linking problem.

Issa Hanou Delft University of Technology

AI Planning 31/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Example

Problem: Connect the right wires and then turn on the power.

Predicates: (connected Link), (power-on),
(link Link1 Link2), (color Link Color),
(power-off)

Actions: (connect Link1 Link2), (turn-on),
(turn-off), (disconnect Link1 Link2)

Initially: (connected l1), (link l1 r4),
(power-off), (color l3 red), (color r1 red),
...

Goal: (power-on) Figure: Wire linking problem.

Issa Hanou Delft University of Technology

AI Planning 31/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

States and Actions

State

State is a conjunction of atoms that currently hold.

Complete state: all other predicate instantiations are assumed to be false.

Partial state: doesn’t matter if the other predicate instantiations are true/false.

Action

Action a ∈ A defines the conditions and effects of moving between states.

pre(a): Set of predicates that must hold to execute a

del(a): Set of atoms removed from state after executing a

add(a): Set of atoms added to state after executing a

Issa Hanou Delft University of Technology

AI Planning 32/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Action Applicability

Can we perform this action in the current state?
pre(a) ⊆ s

Figure: Current state.

Action: (turn-on)

pre(a):
{(connected r1), (connected r2),
(connected r3), (connected r4)}
del(a): {(power-off)}
add(a): {(power-on)}

Issa Hanou Delft University of Technology

AI Planning 33/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Action Progression

What happens if we perform this action in the current state?
progress(s, a) =

(
s − del(a)

)
∪ add(a)

Figure: Current state.

Action: (connect l2 r2)

pre(a): {(not (connected l2)),
(not (connected r2)),
(color l2 c) (color r2 c)}
del(a): {(not (connected l2)),
(not (connected r2))}
add(a):
{(connected l2) (connected r2)}

Issa Hanou Delft University of Technology

AI Planning 34/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Goal achievement

When are we done?
G ⊆ s

Figure: Current state.

Action: (turn-on)

pre(a):
{(connected r1), (connected r2),
(connected r3), (connected r4)}
del(a): {(power-off)}
add(a): {(power-on)}

Issa Hanou Delft University of Technology

AI Planning 35/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Modeling Search Problems

Questions so far?

Issa Hanou Delft University of Technology

AI Planning 36/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

The Planning Domain Definition Language (PDDL)

PDDL: A common language for arbitrary problem specs

Contains the STRIPS formalism

Many variations for various formalisms: extensions with more expressiveness

Supported by a variety of planners

Driven by the (roughly) bi-annual International Planning Competition

Lisp-like syntax (many (((brackets!))))

Learn to read
Can use tools to write (Python library)

Issa Hanou Delft University of Technology

AI Planning 37/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

PDDL Input Files

Domain Problem

Figure: PDDL structure.

Domain

Requirements

Types

Predicates

Actions

Problem Instance

Objects

Initial state

Goal atoms

Issa Hanou Delft University of Technology

AI Planning 38/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Domain Specification in PDDL

Figure: Knights tour problem.

Issa Hanou Delft University of Technology

AI Planning 39/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Domain Specification in PDDL

Figure: Knights tour problem.

(define (domain knights -tour)

(: requirements :strips)

(: predicates

(at ?square)

(visited ?square)

(valid_move ?square_from ?square_to)

)

(: action move

:parameters (? current ?to)

:precondition (and (at ?current)

(valid_move ?current ?to)

(not (visited ?to)))

:effect (and (not (at ?current))

(at ?to) (visited ?to))

))

Issa Hanou Delft University of Technology

AI Planning 39/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Domain Specification in PDDL

Figure: Knights tour problem.

(define (domain knights -tour)

(: requirements :strips)

(: predicates

(at ?square)

(visited ?square)

(valid_move ?square_from ?square_to)

)

(: action move

:parameters (? current ?to)

:precondition (and (at ?current)

(valid_move ?current ?to)

(not (visited ?to)))

:effect (and (not (at ?current))

(at ?to) (visited ?to))

))

Issa Hanou Delft University of Technology

AI Planning 39/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Domain Specification in PDDL

Figure: Knights tour problem.

(define (domain knights -tour)

(: requirements :strips)

(: predicates

(at ?square)

(visited ?square)

(valid_move ?square_from ?square_to)

)

(: action move

:parameters (? current ?to)

:precondition (and (at ?current)

(valid_move ?current ?to)

(not (visited ?to)))

:effect (and (not (at ?current))

(at ?to) (visited ?to))

))

Issa Hanou Delft University of Technology

AI Planning 39/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Problem Instance Specification in PDDL

(define (problem knight -tour)

(: domain knights -tour)

(: objects

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

...

h1 h2 h3 h4 h5 h6 h7 h8

)

(:init

(at a8)

(visited a8)

(valid_move a8 b6)

(valid_move b6 a8)

(valid_move a8 c7)

(valid_move c7 a8)

...

)

(:goal (and

(visited a1)

(visited a2)

...

(visited h8)

)))

Issa Hanou Delft University of Technology

AI Planning 40/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Problem Instance Specification in PDDL

(define (problem knight -tour)

(: domain knights -tour)

(: objects

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

...

h1 h2 h3 h4 h5 h6 h7 h8

)

(:init

(at a8)

(visited a8)

(valid_move a8 b6)

(valid_move b6 a8)

(valid_move a8 c7)

(valid_move c7 a8)

...

)

(:goal (and

(visited a1)

(visited a2)

...

(visited h8)

)))

Issa Hanou Delft University of Technology

AI Planning 40/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Problem Instance Specification in PDDL

(define (problem knight -tour)

(: domain knights -tour)

(: objects

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

...

h1 h2 h3 h4 h5 h6 h7 h8

)

(:init

(at a8)

(visited a8)

(valid_move a8 b6)

(valid_move b6 a8)

(valid_move a8 c7)

(valid_move c7 a8)

...

)

(:goal (and

(visited a1)

(visited a2)

...

(visited h8)

)))

Issa Hanou Delft University of Technology

AI Planning 40/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Problem Instance Specification in PDDL

(define (problem knight -tour)

(: domain knights -tour)

(: objects

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

...

h1 h2 h3 h4 h5 h6 h7 h8

)

(:init

(at a8)

(visited a8)

(valid_move a8 b6)

(valid_move b6 a8)

(valid_move a8 c7)

(valid_move c7 a8)

...

)

(:goal (and

(visited a1)

(visited a2)

...

(visited h8)

)))

Issa Hanou Delft University of Technology

AI Planning 40/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Typing

1. Typing requirement

(: requirements typing)

(:types

vehicle location package

car truck - vehicle)

(:init

truck1 - truck

package1 - package)

(: predicates

(at ?v - vehicle ?l - location)

(carry ?t - truck ?p - package)

(move ?l1 ?l2 - location))

2. Type predicates

(: predicates

(at ?v ?l)

(carry ?t ?p)

(package ?p)

(truck ?c)

(vehicle ?v))

(: objects truck1 package1 loc1 loc2)

(:init

(truck truck1)

(package package1))

(: precondition (and (carry ?t ?p)

(truck ?t) (package ?p)

))

Issa Hanou Delft University of Technology

AI Planning 41/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Typing

1. Typing requirement

(: requirements typing)

(:types

vehicle location package

car truck - vehicle)

(:init

truck1 - truck

package1 - package)

(: predicates

(at ?v - vehicle ?l - location)

(carry ?t - truck ?p - package)

(move ?l1 ?l2 - location))

2. Type predicates

(: predicates

(at ?v ?l)

(carry ?t ?p)

(package ?p)

(truck ?c)

(vehicle ?v))

(: objects truck1 package1 loc1 loc2)

(:init

(truck truck1)

(package package1))

(: precondition (and (carry ?t ?p)

(truck ?t) (package ?p)

))

Issa Hanou Delft University of Technology

AI Planning 41/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Typing

1. Typing requirement

(: requirements typing)

(:types

vehicle location package

car truck - vehicle)

(:init

truck1 - truck

package1 - package)

(: predicates

(at ?v - vehicle ?l - location)

(carry ?t - truck ?p - package)

(move ?l1 ?l2 - location))

2. Type predicates

(: predicates

(at ?v ?l)

(carry ?t ?p)

(package ?p)

(truck ?c)

(vehicle ?v))

(: objects truck1 package1 loc1 loc2)

(:init

(truck truck1)

(package package1))

(: precondition (and (carry ?t ?p)

(truck ?t) (package ?p)

))

Issa Hanou Delft University of Technology

AI Planning 41/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

PDDL

Questions so far?

Issa Hanou Delft University of Technology

AI Planning 42/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Exercise: Missing precondition

Ferry boat domain

Three actions: (board ?car ?loc),

(sail ?loc1 ?loc2), (debark ?car ?loc)

Predicates: (car ?car), (location ?loc),
(at-ferry ?loc), (at ?car ?loc),

(empty-ferry), (on-ferry ?car)

What precondition is missing for board?

� 2 min for yourself, then 1 min discuss with your
neighbor

(: action board

:parameters (?car ?loc)

:precondition (and

(car ?car)

(location ?loc)

(at ?car ?loc)

(empty -ferry))

:effect (and (on -ferry ?car)

(not (at ?car ?loc))

(not (empty -ferry)))

)

Issa Hanou Delft University of Technology

AI Planning 43/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Exercise: Missing precondition

Ferry boat domain

Three actions: (board ?car ?loc),

(sail ?loc1 ?loc2), (debark ?car ?loc)

Predicates: (car ?car), (location ?loc),
(at-ferry ?loc), (at ?car ?loc),

(empty-ferry), (on-ferry ?car)

What precondition is missing for board?

� 2 min for yourself, then 1 min discuss with your
neighbor

(: action board

:parameters (?car ?loc)

:precondition (and

(car ?car)

(location ?loc)

(at ?car ?loc)

(empty -ferry))

:effect (and (on -ferry ?car)

(not (at ?car ?loc))

(not (empty -ferry)))

)

Issa Hanou Delft University of Technology

AI Planning 43/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Solution: Missing precondition

Ferry boat domain

Three actions: (board ?car ?loc),

(sail ?loc1 ?loc2), (debark ?car ?loc)

Predicates: (car ?car), (location ?loc),
(at-ferry ?loc), (at ?car ?loc),

(empty-ferry), (on-ferry ?car)

Missing precondition (at-ferry ?loc)

(: action board

:parameters (?car ?loc)

:precondition (and

(car ?car)

(location ?loc)

(at ?car ?loc)

(at-ferry ?loc)

(empty -ferry))

:effect (and (on -ferry ?car)

(not (at ?car ?loc))

(not (empty -ferry)))

)

Issa Hanou Delft University of Technology

AI Planning 44/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Exercise: Spot the mistake

Towers of Hanoi

Discs stacked on pegs (on ?disc ?peg)

Discs can only be on top of larger discs
(smaller ?top ?bottom)

Move one disc at a time

Only keep track of disc position: on other disc or
on peg (on ?d1 ?d2)

Clear discs that have no disc on top (clear ?d)

Goal: have the same stack on the final pole
(on ?smallest ?small)

Figure: Towers of Hanoi.

� 2 min for yourself, then 1 min
discuss with your neighbor

Issa Hanou Delft University of Technology

AI Planning 45/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Exercise: Spot the mistake

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))))

)

Figure: Towers of Hanoi.

� 2 min for yourself, then 1 min
discuss with your neighbor

Issa Hanou Delft University of Technology

AI Planning 45/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Exercise: Spot the mistake

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))))

)

Figure: Towers of Hanoi.

� 2 min for yourself, then 1 min
discuss with your neighbor

Issa Hanou Delft University of Technology

AI Planning 45/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Solution: Missing effect

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

Figure: Towers of Hanoi.

Issa Hanou Delft University of Technology

AI Planning 46/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d3
d2
d1

Next: (move d1 d2 c)

Next: (move d2 d3 b)

Next: (move d1 c d2)

Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)

Issa Hanou Delft University of Technology

AI Planning 47/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d3
d2
d1

Next: (move d1 d2 c)

Next: (move d2 d3 b)

Next: (move d1 c d2)

Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)

Issa Hanou Delft University of Technology

AI Planning 47/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d3
d2

d1

Next: (move d1 d2 c)

Next: (move d2 d3 b)

Next: (move d1 c d2)

Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)

Issa Hanou Delft University of Technology

AI Planning 47/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d3 d1d2

Next: (move d1 d2 c)

Next: (move d2 d3 b)

Next: (move d1 c d2)

Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)

Issa Hanou Delft University of Technology

AI Planning 47/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d3 d2

d1

Next: (move d1 d2 c)

Next: (move d2 d3 b)

Next: (move d1 c d2)

Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)

Issa Hanou Delft University of Technology

AI Planning 47/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d2
d1

d3

Next: (move d1 d2 c)

Next: (move d2 d3 b)

Next: (move d1 c d2)

Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)

Issa Hanou Delft University of Technology

AI Planning 47/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d2 d3d1

Next: (move d1 d2 c)

Next: (move d2 d3 b)

Next: (move d1 c d2)

Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)

Issa Hanou Delft University of Technology

AI Planning 47/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d3d1
d2

Next: (move d1 d2 c)

Next: (move d2 d3 b)

Next: (move d1 c d2)

Next: (move d3 a c)

Next: (move d1 d2 a)

Next: (move d2 b d3)

Next: (move d1 a d2)

Issa Hanou Delft University of Technology

AI Planning 47/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Tutorial: Valid plan

(define (domain hanoi)

(: requirements :strips)

(: predicates (clear ?x) (on ?x ?y)

(smaller ?x ?y))

(: action move

:parameters (?disc ?orig ?to)

:precondition (and

(smaller ?disc ?to)

(on ?disc ?orig) (clear ?disc)

(clear ?to))

:effect (and (clear ?orig)

(on ?disc ?to)

(not (on ?disc ?orig))

(not (clear ?to))

)))

a b c
d3
d2
d1

Next:

(move d1 d2 c)

Next:

(move d2 d3 b)

Next:

(move d1 c d2)

Next:

(move d3 a c)

Next:

(move d1 d2 a)

Next:

(move d2 b d3)

Next:

(move d1 a d2)

Issa Hanou Delft University of Technology

AI Planning 47/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

PDDL Extension: numeric fluents

Predicates vs fluents

Express numeric properties

Precondition: =, >, <

Effect: increase,
decrease

Example: package delivery
domain - partial domain

(: predicates (at ?loc) ... )

(: functions

(distance ?loc1 ?loc2)

(battery))

(:init

(distance l1 l2 50)

(battery 100))

(: precondition

(> (battery) 0)

(at ?l2))

(: effect

(decrease (battery) (distance ?l1 ?l2)

)

)

Issa Hanou Delft University of Technology

AI Planning 48/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Exercise: Modeling in PDDL

Goal: get everyone to Delft
Initial: Train starts at Amsterdam,
train capacity 60�, initial demand in
blue

What are the predicates?

What are the actions?

What is the initial state?

What is the goal?

Discuss with neighbour (10 min)

Amsterdam 20�

Schiphol25�

Leiden15� Utrecht 20�

Den Haag15� Delft Rotterdam 20�

20
30

20

25
30

10
20

10 10

35
4035

Figure: Problem setting.

Issa Hanou Delft University of Technology

AI Planning 49/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Relation to Other Lectures

Search, Inference, Learning, and Optimization

Effectiveness for solving planning problems

Issa Hanou Delft University of Technology

AI Planning 50/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Learning Objectives

1 Explain what planning is

2 Explain different approaches to finding plans

3 Read planning problems in PDDL

4 Model a problem in PDDL terms (semantically, not syntactically)

5 Reason whether a model or plan is correct and effective

Issa Hanou Delft University of Technology

AI Planning 51/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Conclusion

Planning problems in the real world

Planning as a search problem

How to model a planning problem

Questions?

Issa Hanou Delft University of Technology

AI Planning 52/53



Introduction Solving a planning problem State space Searching for plans Modeling search problems PDDL Conclusion

Next Steps & Further Information

Homework

Homework exercises week 4

Exam material

Lecture notes

Lecture slides

Homework

Extra information
Book: Russel & Norvig: Artificial Intelligence, Ch.11
http://planning.wiki/ General info on PDDL and planners
http://editor.planning.domains/ Online editor for PDDL
https://unified-planning.readthedocs.io/en/latest/ Python library for
PDDL writing and solving

Questions? i.k.hanou@tudelft.nl
Issa Hanou Delft University of Technology

AI Planning 53/53

http://planning.wiki/
http://editor.planning.domains/
https://unified-planning.readthedocs.io/en/latest/

	Introduction
	Solving a planning problem
	State space
	Searching for plans
	Modeling search problems
	PDDL
	Conclusion

