
Supplementary Material
Moving Trains Like Pebbles: a Feasibility Study on Tree Yards

Issa K. Hanou, 1 Mathijs M. de Weerdt, 1 Jesse Mulderij 1

1Delft University of Technology

1 Relation between problem variants

Short Name
PM Pebble Motion problem

PMTAD Pebble Motion on a Tree with Arrival and
Departure

PPST Partition for a Pebble Sequence on a Tree
PMTADL Pebble Motion on a Tree with Arrival and

Departure, and Length inclusion
PPSTL Partition for a Pebble Sequence on a Tree

with Length inclusion

(a) Problem abbreviations.

PMTAD* PMTADL*

PPST* PPSTL*PM

special case

length is 1

so
lu

tio
n

to solved
by

so
lu

tio
n

to solved
by

special case

length is 1

re
str

ic
tio

n
no

re
al

lo
ca

tio
n

sp
ec

ifi
c str

uc
tu

re

le
ng

th
1

ow
n

ty
pe

Green dotted: problems in P

Red dashed: unknown complexity

Black: NP-hard problems

Special case

Equivalent

Restriction of

* Presented in this paper

(b) Relations between the studied problems.

Figure 1: Overview of studied problems.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2 2-PPST problem is in class P
The proof below is shown for n = 2m but can be altered
to also show for n ≤ 2m since not all branches have to be
filled with pebbles.
Theorem 1 (2-PPST is in P). The Partition for a Pebble
Sequence on a Tree problem is in P if there are m = |B(T)|
branches of length ℓmax = 2 and n ≤ 2m pebbles.

Proof. Given is an instance I = (B,P, S,D) of PPST, such
that m = |B(T)| and n = 2m = |P |. A DAG(S)+ of
the sequence S can be constructed in polynomial time. The
DAG(S)+ can be converted into a bipartite matching prob-
lem by creating a node v♭ and v♯ for every v ∈ DAG(S)+.
Then, an undirected edge {u♭, v♯} is added for every edge
(u, v) ∈ DAG(S)+. If a matching of size m exists in the
bipartite graph, then a partition Π(S) with m tosets of size
2 can be created. Next, it is shown that I is feasible if (=⇒)
and only if (⇐=) a matching of size m exists.

PROOF OF (=⇒): Suppose a matching of size m exists.
By construction of the DAG(S)+, an edge (u, v) can only
exist if the pebbles associated with u and v can be in the
same toset, so the tosets respect the order (condition iii of
partition). Because no two edges in the bipartite matching
may share an endpoint, all tosets are disjoint (condition i
of partition). Furthermore, there are 2m nodes on each side
of the bipartite graph, so a matching of size m means that
exactly all nodes are covered (condition ii of partition). Be-
cause there are m tosets and m branches that are all of length
ℓmax = 2, the branch set and partition are also pairwise
comparable. So, I is feasible.

PROOF OF (⇐=): Suppose I is feasible. Then, a partition
Π(S) exists with m tosets of size 2 that fit on m branches
of length ℓmax = 2. So, a bipartite matching between the
pebbles can be created, which will make m pairs of two peb-
bles.

3 PPSTL is NP-complete
Theorem 3 (PPSTL is NP-complete). The Partition for a
Pebble Sequence on a Tree with Length inclusion problem is
NP-complete.

Proof. PPSTL ∈ NP: Given a solution Π(S) to an instance
I ′ = (B,P, S,D, ℓ, λ) of the PPSTL problem, it can be es-
tablished in O(n) time whether the solution is a valid so-

lution of the PPSTL by checking all conditions of a valid
partition and the pairwise comparability in length.

PPSTL ∈ NP-HARD: Given an instance I = (X)
of the classic Partition Problem, an instance I ′ =
(B,P, S,D, ℓ, λ) of the PPSTL is constructed by creating
m = 2 branches in B with each n − 1 nodes and a length
ℓ(b) =

∑
X
2 . Then, a pebble px ∈ P with size λ(px) = x

is created for every element x ∈ X and all pebbles are
added to the sequences S and D in non-descending order:
S(px) < S(py) , D(px) < D(py) : ∀x, y ∈ X s.t. x < y.

All these steps can be done in O(n) time, so the reduction
is polynomial. Next, it is shown that the I is a yes-instance
of the PP if (=⇒) and only if (⇐=) I ′ is a yes-instance of
the PPSTL.

PROOF OF (=⇒): Suppose I is a yes-instance of the clas-
sic Partition Problem, then there is a partition of the items in
X over the subsets X1 and X2 such that |X1| = |X2|. Then,
the pebbles associated with the items assigned to X1 form
one toset, and the other pebbles form a different toset. First,
a valid partition is constructed. By definition of the PP, these
tosets are disjoint and their union includes all pebbles. More-
over, by construction, the order of the pebbles is maintained
in the tosets. Next, the lengthwise pairwise comparability is
shown. There are now two tosets and there are two branches
in the created instance I ′, so |Π(S)| ≤ |B|. Finally, there are
always enough nodes in the branch for the pebbles in a toset,
and the capacity of the branches is never exceeded. There-
fore, the created partition is valid and pairwise comparable
in length with B.

PROOF OF (⇐=): Suppose I ′ is a yes-instance of the
PPSTL, then there is a partition of pebbles into tosets
Π1, ..,Π|B| that is lengthwise pairwise comparable with the
individual branches of B. By construction, there are |B| = 2

branches, with each a length of
∑

X
2 . So, both tosets contain

pebbles whose sizes sum up to exactly
∑

X
2 . By construc-

tion, each pebble with a size λ was created from the element
λ. Given that there are |π1|(resp, |π2|) pebbles assigned to a
toset π1(resp, π2), the |π1|(resp, |π2|) elements from X that
correspond to these pebble sizes can be added to the subset
of X1(resp, X2). There are no more elements than those that
sum up to

∑
X
2 and each element of X can be in X1 or X2,

but not in both. So, I ′ was created from yes-instance I of the
classic Partition Problem.

4 The PPST and the PMTAD
Lemma 4 (Relation between PPST and PMTAD). Let an in-
stance I = (TL, P, S,D) of the PMTAD problem and an in-
stance J = (B(T), P, S,D) of the PPST problem be given,
such that B(T) is a branch set of the tree T of TL. The in-
stance I is feasible if and only if the instance J is feasible.

Proof. PROOF OF (=⇒): Suppose that I is feasible. Next, it
is shown that this implies that there is a Π(S) that must be
pairwise comparable with B(T) (Corollary 1).

First, to park each toset in a different branch |Π(S)| ≤
|B(T)| is required. In the general case, there are no two
tosets, say π and ρ, that can be parked on the same branch.
Only if for each pebble pk in π it is true that pk < q1 , q1 =

minq∈ρ, then all the pebbles of π can be parked in a branch,
and all the pebbles of ρ can be parked above these pebbles
in the same branch. This also implies that the two tosets can
be merged into R = (π, ρ). However, in general, this is not
assumed to be true, so parking two arbitrary tosets π and ρ
on the same branch would result in a conflict. From the def-
inition of a partition, there would be a pebble p ∈ π that
arrives later than the pebbles in ρ, while p also has to depart
later than all the pebbles in ρ. This means p will be blocking
the pebbles from ρ, so a conflict arises, and thus, each toset
requires its own branch for parking its pebbles.

Because both the partition and branch set are ordered by
the non-ascending size of the tosets and branches respec-
tively, they can be pairwise compared. Take the largest toset
π1 and park it in the largest branch, which can only fit if
|πi| ≤ |bi|, where bi is the set of nodes associated with the
largest branch. Because |Π(S)| ≤ |B(T)|, there must be a
branch for each toset, and thus, if I is feasible this implies
that this branch is large enough to fit all pebbles of the toset.

So, we showed that if I is feasible, each toset of Π(S) can
be parked in a different branch that is large enough to fit all
pebbles of the toset, so J is also feasible.

PROOF OF (⇐=): Suppose J is feasible, so there is a
partition that matches the set of branches B(T). There are
|B(T)| branches in the tree T and each branch bi provides
enough space to park |bi| pebbles. So, a toset πj of size
|πj | ≤ |bi| can park in the branch bi. Up to |B(T)| dif-
ferent tosets can be parked in branch bi, in other words, if
|Π(S)| ≤ |B(T)|, then each toset can be parked on a sepa-
rate branch (condition i). Now, take the set B(T) to be or-
dered in non-ascending order, and take a partition Π(S) that
is ordered in non-ascending order according to the toset size,
then each toset can be matched pairwise to a branch.So, if
there exists a partition Π(S) then I is feasible.

From the proof of Lemma 4, the following Corollary 3 is
derived on merging tosets.
Corollary 3 (Merging tosets). Two tosets π and ρ can be
merged into toset R = (π, ρ) if and only if pk < q1 ,∀pk ∈
π , q1 = minq∈ρ.

Lemma 4 showed that when a partition can be found that
matches the tree, the PMTAD instance is feasible. When
each branch is a simple path, which is a direct child from
the root of the tree, then this is both a necessary and suf-
ficient condition. However, if the branches are not simple
paths, then it is only a sufficient condition since the nested
branching nodes could provide space for more feasible par-
titions to exist.

If there exists a partition Π(S) that is smaller than the set
of branches B(T) but there is no matching such that each
toset is pairwise comparable with a branch, then it might
still be possible to feasibly park the pebbles. This is explored
Lemma 5.
Lemma 5 (Combining branches for a partition). Let an in-
stance I = (TL, P, S,D) of the PMTAD problem and a
branch set B(T) be given. If there exists a strictly smaller
partition Π(S) (|Π(S)| < |B(T)|) such that its tosets are
pairwise comparable with the disjoint subsets of branches
Bi ⊂ B(T), then the instance I is feasible.

a b

c

d

e

(a) General graph

a b

c

d

e

(b) Directed Acyclic Graph

Figure 2: Longest Path problem

Proof. Suppose there exists a set of branches B(T) and a se-
quence of pebbles S expressed by Π(S) such that |Π(S)| <
|B(T)|. Both sets are ordered in non-descending order of
item size to be able to do a pairwise comparison. Now, take
the smallest toset π1 and park its pebbles on the smallest
possible branch b that is large enough, i.e. |π1| ≤ |b|, if such
a branch exists. Otherwise, combine the first m branches
in the ordered set B(T)≤ to form B1 ⊂ B(T) , B1 =
{b1, ..bm} such that |π| ≤

∑
b∈B1

|b|. Not all the pebbles
of one toset have to park on the same branch as long as there
are no pebbles from two different tosets parked on the same
branch because pebbles of the same toset cannot block each
other by definition. Thus, the subsets of branches each have
to be disjoint with the other subsets. Then, continue assign-
ing tosets to a branch or a subset of branches that can hold
all the pebbles of the toset. If this is possible for every toset,
then the instance is feasible.

5 Problems
5.1 Longest Path problem
Problem: Longest Path problem
Input: I = (G): given is a graph G = (V,E).
Question: Find the simple path in G including the maxi-

mum number of edges in E.

Consider the instance of the Longest Path problem below.
On a general graph, the edges can be followed endlessly,
and thus the path never really ends because there are cycles
(Figure 2a). However, on the DAG in Figure 2b, the options
are more limited, and the red dashed path d → e → a →
b → c can be constructed that is of the maximal length.
Moreover, in a DAG, the Longest Path can be found in linear
time (Sedgewick 2011).

5.2 Vertex-Disjoint Path Cover problem
Problem: Vertex-Disjoint Path Cover problem
Input: I = (G,K): given is a graph G = (V,E) and an

integer K.
Question: Is there a set of K paths P in G such that every

vertex in V belongs to exactly one path?

The problem is illustrated below, which shows two solu-
tions for the DAG in Figure 3b: i) the red dashed paths to-
gether: {(d, e), (c, a, b)}, and ii) the black straight paths to-
gether: {(d, b, c), (e, a)}. However, for general graphs, this
is more complicated. This is most clear considering the case

K = 1 (red dashed path in Figure 3a), then the problem
becomes the Hamiltonian Path problem in which the goal
is to determine whether a path exists that visits every ver-
tex exactly once. This is one of the most well-known NP-
complete graph problems (Sipser 2013).

For a DAG, the problem is in P and can be solved by
transforming the problem into a bipartite graph and solving
its matching problem. First, create two nodes v♭, v♯ in the
bipartite graph for each v in the DAG, and add an undirected
edge between u♭ and v♯ for every edge (u, v) in the DAG.
Now, a matching can be found in this bipartite graph of size
|V | −K that corresponds to a path cover of size K, and this
is possible in polynomial time (Erickson 2019).

6 Branches
Lemma 1 (Minimal number of branches). The minimal
number of branches |B(T)| for I to be feasible is the num-
ber of nodes in the longest path L(S)− in the negative graph
DAG(S)−.

Proof. Given is the negative graph DAG(S)− of a sequence
S. Take the longest path through this graph. By construc-
tion of the DAG(S)−, for each pair of consecutive pebbles
(pi, pj) along the path, so pi arrives before pj and departs
earlier, thus pi and pj cannot be parked in the same branch.
Otherwise, pj arrives later and then blocks pi for departure.
Therefore, each of the pebbles corresponding to the nodes
in the longest path must be parked in a different branch, so
the number of nodes in this path represents the number of
necessary branches in T for I to be feasible.

This proof results in the following corollary on the infea-
sibility of a sequence.

Corollary 4 (Length of the longest path). If there are fewer
branches than the length of the longest path L(S)− in the
DAG(S)−, i.e. |B(T)| < |L(S)−|, then I is infeasible.

7 Largest branches
When there are fewer branches than there are pebbles, as
much space as possible should be used. Moreover, if there
are exactly n nodes in the union of the branches of T ,
then precisely every node must be used. Therefore, take the
largest branch of length ℓL = maxb∈B(T) |b| and if there ex-
ists a toset π of at least size ℓL, then a pebble from π can be
parked on each node in the branch. The importance of this
case is shown in Lemma 2.

a b

c

d

e

(a) General graph with K = 1

a b

c

d

e

(b) DAG with K = 2

Figure 3: Vertex-Disjoint Path Cover Problem

Lemma 2 (Largest branch). Let the tree T defined by
branches B(T) have

∑
b∈B(T) |b| = n, if there is no par-

tition Π(S) with a toset π ∈ Π(S) such that |π| ≥ ℓL =
maxb∈B(T) |b| then the instance I is infeasible.

Proof. Suppose that the branch set B(T) has n nodes in
total such that n pebbles can park there. Since there are n
nodes available for parking, every node in the tree must be
used for parking a pebble for the instance to be feasible. So,
the largest branch of length ℓL must thus be filled with ℓL
pebbles. If there is no partition Π(S) with a π ∈ Π(S) such
that |π| ≥ ℓL, then the largest branch cannot be filled with
ℓL pebbles of the same toset. So, there will be at least one
pebble parked in the largest branch that blocks another peb-
ble. Therefore, the instance is infeasible.

The largest possible toset can be found by taking the
Longest path of the DAG(S)+ constructed by the method
in Method 1. This result is used in Corollary 5.

Corollary 5 (Parking in largest branch). If
∑

b∈B |b| = n
and the length of the longest path L(S)+ in the DAG(S)+

is smaller than the length of the largest branch, i.e.
maxb∈B(T) |b| > |L(S)+|, then the instance is infeasible.

This result can also be extended with empty nodes in T ,
which can then be left empty in the largest branch, but the
rest must still be filled up. Take c ≥ 0 to be the number of
empty nodes in the tree (Corollary 6).

Corollary 6 (Parking with abundance). If
∑

b∈B |b| = n+c
and maxb∈B(T) |b| > |L(S)+|+ c, where c ≥ 0 is the num-
ber of empty nodes in the tree, then the instance is infeasible.

8 Partition in DAG
Method: Finding a partition in a DAG

1. Given is a directed acyclic graph G = (V,E) and a path
cover C ⊆ E

2. For each path in C, create a set of nodes U ⊆ V

3. For each set of nodes U , take the pebbles associated with
these nodes and add them to a toset π

4. Create a partition of the tosets

Lemma 3 (Finding a partition in a DAG). Given the positive
graph DAG(S)+, a valid partition Π(S) can be constructed
by taking a vertex-disjoint path cover of DAG(S)+.

Proof. Given is the positive graph DAG(S)+ of a sequence
S. Take a path cover C and construct the partition by adding
the pebbles associated with the nodes of a path together in a
toset. By definition, the set of paths includes all the nodes in
the graph, so the union of the tosets is P (condition ii of par-
tition). Since C is a vertex-disjoint path cover, the tosets in
Π(S) are disjoint (condition i of partition). Finally, because
the DAG(S)+ respects the order of the pebbles in S by con-
struction, the pebbles in a toset are totally ordered (condition
iii of partition). So, the partition based on a vertex-disjoint
path cover is a valid partition for S.

Based on Lemma 3, the following two corollaries on spec-
ifying the partition are derived. The latter can be achieved
by selecting the specific edge for the path cover, and delet-
ing all other edges connected to the nodes in the DAG(S)+

of these pebbles, so they are no longer considered as other
possible edges of the path cover.
Corollary 7 (Find a vertex-disjoint path cover). Given the
number of branches |B(T)|, a vertex-disjoint path cover of
size K = |B(T)| can be found.

References
Erickson, J. 2019. Algorithms. University of Illinois.
Sedgewick, K. D., Robert; Wayne. 2011. Algorithms.
Addison-Wesley Professional, 4th edition.
Sipser, M. 2013. Introduction to the Theory of Computation,
Third Edition. Boston, MA, USA: Cengage Learning.

